算法进阶--SVM实践

wuchangjian2021-10-28 22:58:12编程学习

算法进阶--SVM实践

    • 分类器指标(再谈)
    • svm初步使用

分类器指标(再谈)

在前面precision,recall 以及F1评判指标下引入 F β F_\beta Fβ:
F β = ( 1 + β ) ⋅ p r e c i s i o n ⋅ r e c a l l β 2 ⋅ p r e c i s i o n + r e c a l l F_{\beta}=\frac{(1+\beta)\cdot precision \cdot recall}{\beta^{2} \cdot precision+recall} Fβ=β2precision+recall(1+β)precisionrecall

  • 其中, β 2 \beta^{2} β2越小,表明越重视precision

svm初步使用

import numpy as np
import pandas as pd
from sklearn import svm
from sklearn.model_selection import  train_test_split
from sklearn.metrics import  accuracy_score


# 利用SVM对鸢尾花进行分类


#导入鸢尾花数据集
data = pd.read_csv('./iris.csv')
print(data)
#选择特征值X,为花萼长和花萼宽为和目标值Y
X,Y = data.iloc[:,[2,3]],data.iloc[:,5]
#将目标值Y分类成0,1,2 三个类别
Y=pd.Categorical(Y).codes
#拆分数据
x_train,x_test,y_train,y_test = train_test_split(X,Y,random_state=1,test_size=0.75)


#选择svm分类器并开始分类
clf = svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr')
clf.fit(x_train,y_train)


#准确率
y_hat = clf.predict(x_test)
print(y_hat)

print('准确率为:',clf.score(x_test,y_test))
print('准确率为:',accuracy_score(y_hat,y_test))

输出:

     Unnamed: 0  Sepal.Length  ...  Petal.Width    Species
0             1           5.1  ...          0.2     setosa
1             2           4.9  ...          0.2     setosa
2             3           4.7  ...          0.2     setosa
3             4           4.6  ...          0.2     setosa
4             5           5.0  ...          0.2     setosa
..          ...           ...  ...          ...        ...
145         146           6.7  ...          2.3  virginica
146         147           6.3  ...          1.9  virginica
147         148           6.5  ...          2.0  virginica
148         149           6.2  ...          2.3  virginica
149         150           5.9  ...          1.8  virginica

[150 rows x 6 columns]
[0 1 1 0 2 1 1 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 1 0 2 1 0 0 1 1 1 2 1 2 1 0 1
 0 1 2 2 0 1 2 1 2 0 0 0 1 0 0 2 2 2 2 1 1 2 1 0 1 1 0 0 2 0 1 1 1 1 2 1 0
 1 1 2 1 2 1 0 0 0 2 0 1 2 1 0 0 1 0 2 1 2 2 1 2 2 1 0 1 0 1 1 0 1 0 0 2 1
 2 0]
准确率为: 0.8938053097345132
准确率为: 0.8938053097345132

Process finished with exit code 0

相关文章

Leetcode-go 插件

1、setting里面设置搜索 leetcode  ...

Mybatis-Plus 支持分库分表了?-官方神器发布

今天介绍一个 MyBatis - Plus 官方发布的神器:mybatis...

一文看懂String类中的常用方法

1、int length(): 返回字符串的长度: return value.length2、char charAt(int index): 返回某索引处的字符return value[index]3...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。